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Abstract
The booming development of the Internet of Things (IoT) has led to an explosion of web services, making it more incon-
venient for users to choose satisfactory services among numerous options. Therefore, ensuring quality of service (QoS) in
a service-oriented IoT environment is crucial, highlighting QoS prediction as a prominent research focus. However, issues
related to information credibility, user data privacy, and prediction accuracy in QoS prediction for IoT services have become
significant challenges in current research. To tackle these issues, we propose TPP-GNCF, a trust-aware privacy-preserving
QoS prediction framework that integrates graph neural networks with collaborative filtering methods. In TPP-GNCF, we filter
out untrustworthy QoS values provided by users for certain services to select credible QoS values. Then, a message-passing
graph neural network (MP-GNN) is utilized to effectively capture information transmission and relationships in the graph
structure, while differential privacy is used to protect user node information. In addition, we use a similarity calculation
method based on weight function in collaborative filtering to mine implicit embedded features that graph neural networks
cannot directly utilize. Finally, the final missing QoS values are achieved by fusing graph neural predicted QoS and feature
collaborative filtering predicted QoS. We conducted extensive experiments on the well-known WS-DREAM dataset. The
results demonstrate that the TPP-GNCF framework not only surpasses existing schemes in performance but also effectively
addresses issues of information credibility and user privacy.

Keywords QoS prediction · Gaussian distribution · GNN · Privacy protection · IoT services

Introduction

With the rapid expansion of IoT, network complexity and
user needs have shown unprecedented growth, ensuring the
quality of network services has become a crucial task [1–3].
Recent academic studies have emerged revealing the crit-
ical role of QoS prediction in network management. This
trend reflects not only the importance attached by indus-
try and academia to QoS prediction but also highlights its
indispensability in meeting increasingly complex network
requirements. QoS prediction becomes critical in this con-
text, as it is an essential component of network services. The
objective of QoS prediction is to accurately forecast web ser-
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vice performance indicators, such as delay, bandwidth, and
reliability, to meet user requirements for service quality [4,
5]. Hence, as the popularization of artificial intelligence in
daily life [6], people’s demand for connectivity and intelli-
gence in the IoT continues to increase [7–9], and the role of
QoS prediction becomes increasingly prominent.

QoS typically refers to the non-functional attributes of
a network or service, encompassing factors like response
time, availability, reliability, throughput, and other pertinent
characteristics [4, 5, 10, 11]. These non-functional attributes
are critical to user experience and service quality, and QoS
provides a way to quantify and evaluate these attributes.
In network communications, QoS can indicate performance
characteristics such as data transmission stability, latency,
and bandwidth, thereby affecting users’ perception and expe-
rience with network services [3]. In the service field, QoS
broadly covers the reliability, security, response time, and
other aspects of the service, and is used to measure whether
the service can meet user expectations and requirements [10,
11]. Thus, QoS is not only the focus of service providers and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-025-01824-w&domain=pdf
http://orcid.org/0000-0002-2319-3824
http://orcid.org/0000-0001-6569-3029
http://orcid.org/0000-0002-3619-8966


191 Page 2 of 18 Complex & Intelligent Systems (2025) 11 :191

Fig. 1 An illustration of QoSmissing value prediction in IoT. Taking n users {u1, u2, u3, . . . , un} andm services {s1, s2, s3, . . . , sm} as an example,
it shows how users invoke web services, which can be modeled as a user-service QoS interaction matrix

network operators but also one of the key criteria for users to
choose services and evaluate service quality. With the rapid
growth of services in IoT scenarios, it is often impossible
for ordinary users to essentially judge the quality of a ser-
vice. Therefore, ensuring users can discover services that
precisely match their requirements highlights the paramount
importance of accurately predicting QoS values in the realm
of web services.

Service-oriented QoS prediction is a complex data analy-
sis task, which aims to predict the QoS value of each service
invoked by the target user based on limited historical data.
However, data sparsity and cold start problems make it dif-
ficult to obtain satisfactory recommendation results in this
process. To accomplish the prediction task of missing values,
the recommendation algorithm can be used to fill the missing
values in theQoS prediction. Specifically, theQoS prediction
problem can be converted into a recommendation task, and
the recommendation system model can be trained using the
QoS data that is already available. The trained model is then
utilized to forecast missing QoS values. Based on the user’s
historical behavior and other relevant information, the rec-
ommendation system has the ability to anticipate the user’s
QoS preference for a certain service, thereby filling in the
missing values. As illustrated in Fig. 1, an example of the
QoS missing value prediction problem in the IoT environ-
ment is presented, which depicts how to transform relevant
historical data into a user-service interaction matrix to model
the QoS value prediction task in the process of user invok-
ing a service. To achieve this prediction task, researchers
initially adopted recommendation techniques such as col-
laborative filtering, which fills missing values based on user
or item similarity [12–14]. By analyzing user behavior pat-
terns and preferences, recommendation systems can identify
users or services similar to target users or target services,
thereby predicting missing QoS values. Collaborative filter-

ing technology is extensively employed to predict unknown
QoS values. This method primarily uses the calculation of
user or service similar neighborhoods for prediction. How-
ever, this method is highly susceptible to the sparse nature of
the user-service invocation matrix, which notably influences
the precision of QoS predictions. To alleviate this special
problem, researchers have used clustering algorithms [15,
16], matrix factorization (MF) [17–20], and other techniques
[21–24] to improve QoS prediction. Recent studies have also
employed deep learning [25, 26] and graph neural networks
[27, 28] to enhance QoS prediction accuracy. However, QoS
prediction in IoT services still faces three major challenges.

• Data credibility issues. Given various research solu-
tions, it is widely acknowledged that the quality of data
used for QoS prediction is crucial. Outliers stemming
from untrustworthy QoS values provided by users for
certain services can greatly affect the prediction perfor-
mance.

• User privacy security. The given QoS values may reveal
users’ sensitive information, so it is imperative to design
methods that prioritize protecting user privacy.

• Poor prediction performance. Efficient and accurate
prediction algorithms are the key to QoS prediction for
IoT services. How to strike a balance between complexity
and performance is a hot topic.

To tackle the aforementioned issues, we design a novel
fusion QoS prediction framework with trust-aware privacy
protection named TPP-GNCF. First, we use the 3-σ rule
of the Gaussian distribution to filter out possible outliers
to select credible QoS values. Then, a MP-GNN is utilized
to effectively capture the information transmission and rela-
tionships in the graph structure and differential privacy is
used to protect the information of user nodes. In addition, we
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use a similarity calculation method based on weight function
in collaborative filtering to mine implicit embedded features
that graph neural networks cannot directly utilize. Finally, the
missingQoS values are obtained by fusing the QoS predicted
byMP-GNN and feature collaborative filtering. In summary,
the main innovations of our article are as follows:

• Wefilter out untrustworthy QoS values provided by users
for certain services in the user-service matrix that may
affect the model’s understanding and prediction of user
behavior. It will then utilize GNN to process the features
of users and services, along with the interaction infor-
mation between them, and apply differential privacy to
protect the privacy of user nodes, thereby enabling the
fusion of multi-source information for effective QoS pre-
diction while protecting user privacy.

• We employ a weight function-based similarity calcula-
tion method in collaborative filtering to perform trust-
aware collaborative prediction, aiming to deeplymine the
implicit embedded features that graph neural networks
cannot directly utilize.

• We propose a novel fusion QoS prediction frame-
work, TPP-GNCF, a trust-aware and privacy-preserving
scheme that determines the final missing QoS values by
integrating trust-aware graph neural network predicted
QoS and trust-aware collaborative filtering predicted
QoS.

• Extensive comparative and ablation experiments are
conducted on well-known QoS datasets to assess the
superiority of TPP-GNCF. The results illustrate that TPP-
GNCF outperforms existing solutions in performance.

The remainder of this work is structured as follows. We
present some existing work in Sect.“Literature overview”.
We introduced the relevant basic knowledge involved in this
article, which includes differential privacy and message-
passing graph neural networks in Sect. “Preliminaries”.
Section “Proposedmethod” introduces the relevant details of
our scheme. Section “Experiment and evaluation”weprimar-
ily conducted numerous experiments and provided detailed
discussion and analysis. Finally, we present a summary of the
paper’s conclusions and and future research ideas in Section
“Conclusion”.

Literature overview

QoS prediction is increasingly vital as a core component of
IoT services. The growing network complexity and rising
user demands further emphasize the significance of QoS pre-
diction. Numerous studies on QoS prediction have emerged,
underscoring its growing relevance in both industry and

academia. This section reviews traditional QoS prediction
approaches and privacy-preserving QoS prediction schemes.

QoS prediction

Research on QoS prediction in Web services has attracted
widespread attention, and related research and development
have increased significantly. Many earlier solutions were
based on collaborative filtering methods for web service rec-
ommendations. Zheng et al. [29] integrated the traditional
collaborative filteringmethods based on user and service [30,
31] to design a hybrid QoS prediction scheme. This scheme
is equippedwith a confidenceweight factor to form a new lin-
ear combination for the final QoS prediction. Additionally,
collaborative filtering methods using MF for QoS predic-
tion are also popular. Zheng et al. [19] first integrated similar
users intoMF forQoS prediction, proposing a neighborhood-
integrated MF scheme. Xu et al. [32] presented a scheme
for QoS value prediction utilizing probabilistic MF, which
combines users’ QoS values and geographical location infor-
mation.Chang et al. [33] presented a graph-basedMFscheme
based on PMF, primarily extracting context information to
construct a graph for QoS prediction. The contextual infor-
mation mentioned by Chang et al. is extremely important in
the IoT QoS prediction service. For instance, Gao et al. [34]
designed a context-aware prediction scheme that uses fuzzy
clustering algorithms to process contextual information for
the IoT environment, and also presented a QoS prediction
scheme that can extract local and global features. The prolif-
eration of deep learning has led to the extensive utilization of
neural network models in tasks concerning QoS prediction.
Zou et al. [10] presented a new QoS prediction scheme by
integrating the user neighborhoods selected by the collabo-
rative method into the MF via a deep neural network, which
overcomes the shortcomings of traditional schemes that can-
not capture hidden features of users and services. Zhang et al.
[35] proposed an LDCF model by considering the location
correlation between users and services, combining MLP and
similarity adaptive corrector to learn this correlation.

To solve the legacy problems of using neural networks to
predict QoS values in the past, Zou et al. [25] designed an
adaptive QoS prediction framework that integrates location-
aware neural prediction methods and domain-based collab-
orative prediction methods to generate an adaptive QoS
prediction scheme. Li et al. [36] introduced a flexible frame-
work of topology-aware neural models that can achieve
accurate QoS predictions by effectively utilizing context,
eliminating the complex interaction process between sys-
tems. Zhang et al. [26] proposed the user-service graph for
the first time by using the deep connections between users
and services. They further constructed a user-service feature
vector set to build a prediction scheme based on dual-stream
deep learning, utilizing user and service data to the fullest
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to update its feature vector to get more precise prediction
outcomes. To maintain the accuracy and stability of service
recommendations in the presence of untrustworthy users,
Wu et al. [27] designed a framework that integrates repu-
tation into a graph neural network for QoS prediction. This
approach aims to achieve a robust and accurate prediction
result. Liu et al. [28] also used graph neural networks for
QoS prediction. They conducted a more detailed exploration
to illustrate the advantages of GNN for QoS prediction tasks.
However, a shortcoming is that implicit features are not fully
considered when extracting user and service features.

Existing solutions have made significant progress in QoS
prediction, enhancing the stability and performance of net-
work services while providing a robust foundation for user
experience and the growing network demands in the IoT envi-
ronment. However, most advanced solutions overlook the
critical issue of user privacy protection.

Privacy-preserving QoS prediction

The continuous advancements in science and technology,
coupled with the popularization of privacy policies, have led
to a steady increase in people’s awareness of privacy pro-
tection. This trend has attracted academic attention to the
privacy issues in QoS prediction. Zhu et al. [37] introduced a
privacy-preserving QoS prediction scheme based on random
perturbations, aiming to simply and effectively improve the
privacy of the prediction method. On this basis, the authors
designed P-UIPCC and P-PMF two classic QoS prediction
methods with privacy protection. Liu et al. [38] introduced
a QoS prediction method based on differential privacy by
employing the Laplace mechanism to introduce noise, the
framework ensures the protection of sensitive information.
In particular, they designed two types of methods, namely
directly and simply applying differential privacy to user data
(DPS) and aggregated data differential privacy (DPA). DPA
first aggregates user data and then applies differential privacy
to enhance the practicality of QoS data. Then, Liu et al. [39]
proposed a novel QoS prediction scheme, namely shared col-
laborative web service QoS prediction and designed a novel
differential privacy method for it to achieve data sharing.
This framework can not only achieve shared collaboration
QoS prediction but can also prevent the leakage of relevant
private information. Zhang et al. [40] studied the privacy pro-
tection issue of QoS prediction in mobile edge computing
scenarios. They proposed a novel QoS prediction method
that protects privacy by using Laplacian noise in mobile
edge scenarios, which effectively solves the issue of privacy
leakage of user data in edge environments. However, differ-
ential privacy-based methods for privacy protection strike a
trade-off dilemma betweenmaintaining privacy and ensuring
accuracy, because enhancing privacy inmultiple calculations

involves adding more noise, which inevitably reduces accu-
racy.

We explored the delicate balance between privacy preser-
vation and prediction accuracy by analyzing previous QoS
prediction schemes. As elucidated in [28], various graph
structures can result in significant differences in accuracy.
Different from previous prediction solutions based on graph
neural networks, this paper mainly uses a fusion method of
MP-GNN combined with collaborative filtering to perform
QoSprediction tasks.Comparedwith traditional graphneural
network structures, MP-GNN can better capture the infor-
mation transfer process in graph data, thereby improving the
accuracy of predictions.

Preliminaries

Differential privacy

Differential privacy [41, 42] is defined by a randomization
mechanism M that maps a dataset D to a range of values
R. If for any subset T in the range R and any two adja-
cent databases Di and D′

i with Di , D′
i ∈ D, the following

inequalities are satisfied:

Pr[M(Di ) ∈ T ] ≤ eε Pr[M(D′
i ) ∈ T ] + δ. (1)

Then, we state that the randomization mechanism M sat-
isfies (ε, δ)-differential privacy. The Gaussian mechanism
provides (ε, δ)-differential privacywith a slack term δ, ensur-
ing that the probability of leaking user privacy for any
possible output does not exceed δ. For instance, setting δ to
10−3 implies that only a probability of 10−3 can be tolerated
to violate strict differential privacy. Hence, the smaller δ is,
the higher the probability that the mechanism satisfies differ-
ential privacy. ε > 0 represents the privacy budget, indicating
the degree of privacy leakage. This parameter is crucial for
privacy protection and is inversely related to noise levels.
When the ε value is small, it means that the risk of privacy
leakage is relatively low. For standard continuous variables,
the Gaussian mechanism can be employed to ensure (ε, δ)-
differential privacy. To achieve this, we need to ensure
that the noise distribution η ∼ N (0, σ 2) satisfies (ε, δ)-
differential privacy. We select the constant a such that a ≥√
2 ln(1.25/δ), where δ fallswithin the interval (0, 1). There-

fore, the noise scale σ ≥ a� f /ε = √
2 ln(1.25/δ)� f /ε,

where � f represents the sensitivity of the function f . This
sensitivity can be obtained by maxDi ,D′

i
|| f (Di ) − f (D′

i )||,
where f is a real-valued function. In this Gaussian mech-
anism, N represents the noise sample value added to the
dataset. These noise samples are obtained by sampling from
a Gaussian distribution with mean 0 and variance 2 ln(1.25/δ)

ε2
.
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Fig. 2 Overall framework preview of TPP-GNCF. TPP-GNCF first
adopts the 3-σ principle to select credible QoS values, constructs a
trust-aware graph, and adds noise to user data nodes to improve privacy.
Next, a message passing graph neural network is used to predict QoS on
the trust-aware graph, and the model is trained through a loss function
until the optimal solution is obtained. Then, collaborative filtering is per-

formed for QoS prediction based on the similarity calculationmethod of
the weight function to further mine implicit embedded features. Finally,
theQoS prediction of the trust-aware graph neural network is fusedwith
the QoS prediction results of the trust-aware collaborative filtering to
obtain the final QoS prediction value

These noise samples can be added to the original data for
privacy protection.

Message passing graph neural network

The MP-GNN [43] is a neural network model designed for
processing graph data. It learns the relationships between
nodes and the structural characteristics of the graph by pass-
ing messages between nodes. Let G = (V , E) be a graph,
where V represents the set of nodes and E represents the
set of edges. Each node v ∈ V is associated with a feature
representation xv . The layer index of the GNN is denoted as
l = 0, 1, . . . , L − 1. Through multiple rounds of message
passing and node updates, theGNNcan learn the global char-
acteristics of the graph at the node level, enabling it to achieve
good performance on various tasks. The following presents
the general form of aMP-GNN,whichmainly comprises two
parts: the message passing and the readout.

Message passing stage: During the process of message
passing, each node combines its own characteristics with
those of its neighboring nodes to generate and deliver mes-

sages. This process can be iteratively repeated multiple times
to allow nodes to aggregate more information. Let N (v)

denote the set of neighbors of node v. The formula for mes-
sage passing is typically expressed as follows:

m(l+1)
vu = M

(
x (l)
v , x (l)

u

)
,∀(u, v) ∈ V , (2)

where m(l+1)
vu is the message sent by node v to node u, M

is the message passing function, and t is the number of lay-
ers of GNN. After receiving messages from neighbor nodes,
each node needs to aggregate these messages to update its
representation.

m(l+1)
v = AGG

(
{m(l+1)

vu : u ∈ N (v)}
)

,∀u ∈ V , (3)

where AGG is an aggregation function, which summarizes
the messages of neighbor nodes into an aggregate message
m(t)

v . Upon receiving aggregated messages, nodes need to
use these messages to update their feature representations.
Typically, the update process combines the characteristics
of the node itself with the aggregated messages, undergoing
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some nonlinear transformation.

x (l+1)
v = U

(
x (l)
v ,m(l+1)

v

)
, (4)

where x (l+1)
v is the feature representation of node v at layer

l + 1, and U is the node update function.

Readout stage: In MP-GNN, the readout stage produces
the final node representation hG , where L is the last layer of
the neural network. Typically, one can linearly transform the
final representation of a node and then apply an activation
function to produce the final output.

hG = R
(
{x (L)

v : v ∈ V }
)

. (5)

Proposedmethod

Overview of the TPP-GNCF

In this article, the proposed TPP-GNCF scheme mainly
contains four key stages: (a) Trust graph construction and
embedding processing; (b) Trust-Aware Graph Neural QoS
Prediction; (c) Trust-aware collaborative filtering QoS pre-
diction; and (d) FusionQoS prediction. It is worth noting that
stages (b) and (c) of TPP-GNCF can independently predict
unknown QoS values, but in this work, we design a fusion
model that combines these two schemes to predict the final
QoS value. The overall process framework of TPP-GNCF is
demonstrated in Fig. 2, and each stage will be described in
detail below.

Trust graph construction and embedding processing

Trusted QoS value selection

To ensure the quality and stability of the graph structure,
we need to pre-process the user data to remove outliers that
have an adverse effect on the training and prediction of the
model before constructing the user-service interaction graph.
These outliers often represent untrustworthy values provided
by users, which are meaningless for predicting effective QoS
values.

In IoT service scenarios, QoS data typically follows a
Gaussian distribution [1, 44], which makes the 3-σ rule
an ideal choice for removing outliers. Its unique statistical
properties can effectively retain reliable data while accu-
rately filtering outliers, significantly enhancing prediction
accuracy. Therefore, the 3-σ rule derived from the Gaussian
distribution N (μ, σ 2) is used to identify trustworthyvalue for
QoS prediction. Based on this, it can be determined whether
the QoS value is within the range of (μ − 3σ,μ + 3σ). If
so, the user’s QoS is considered trustworthy; otherwise, it

may be abnormal or untrustworthy. Referring to [16, 44], we
assume that the user’s QoS value follows a Gaussian distri-
bution. We compute the standard deviation σ and mean μ

from the user’s QoS historical data and use the 3-σ rule to
determine if a user’s QoS is trustworthy. Based on the Gaus-
sian distribution, it is observed that approximately 99.7% of
the QoS values rus fall within the interval (μ− 3σ,μ+ 3σ).
Hence, the probability P of the service s j as observed by the
user ui can be calculated as follows:

P(μs − 3σs < rus < μs + 3σs) = 99.7%, (6)

where σs and μs are the standard deviation and mean of the
QoS values provided by user u for service s respectively.
Figure3 shows a schematic diagram of the application of the
3-σ rule to filter the data from the QoS datasets. The outliers
stem from the untrustworthy QoS values provided by users
for certain services.

Graph construction and embedding processing

We construct the user-service interaction graph after select-
ing trustworthy QoS values, where nodes represent users and
services, and their interactive relationships constitute edges.
We denote the user node set as U = {u1, u2, . . . , un} and the
service node set as S = {s1, s2, . . . , sm}, where n andm rep-
resent the total numbers of users and services, respectively.
The set E represents the edges of user-service interactions.
G = (U∪S, E) represents the user-service interaction graph,
where U ∪ S is the union of the user and service node sets.

To enhance user privacy, noise can be injected into trusted
user nodes subsequent to constructing the conventional
graph. The purpose of adding noise is to blur the real identi-
ties of user nodes, making it difficult to infer the true identity
of users. For each user node ui , a random noise εi is intro-
duced to obfuscate its true identity, resulting in a new node
identifier ũi , i.e., ũi = ui +ηi . Thus, we denote the set of user
nodes after noise addition as Ũ = {ũ1, ũ2, . . . , ũm}. The cor-
responding user-service interaction graph after adding noise
is denoted by G ′ = (Ũ ∪S, E), where Ũ represents the set of
user nodes after adding noise. Through the above construc-
tion, a user-service interaction graph can be constructed. This
graph serves as a foundation for analyzing and modeling the
interactions between users and services to achieve QoS pre-
diction tasks while protecting the user’s privacy information.

Next, as illustrated in Fig. 2, we convert the user and
service nodes into binary representations through one-
hot encoding after constructing the user-service interaction
graph. Suppose d represents the embedding dimension.
Then, the one-hot encoding of users and services can be con-
verted into feature embeddings denoted as hu ∈ R

d for users
and hs ∈ R

d for services, respectively, as elaborated below:
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Fig. 3 Schematic diagram of outlier filtering and the number of data in each part under response time and throughput

One-hot encoding.Wecan convert user and service nodes
into binary representations using one-hot encoding. Assume
that the number of users and services are n and m, respec-
tively. The one-hot encoding of users and services will result
in vectors of length n andm respectively, where one element
in each vector is 1, representing the user or the index of the
service, while the other elements are 0.

Feature embedding. Once the one-hot encoding is com-
pleted, the next step is to map these encodings to the feature
embedding space. For a user node u with a one-hot encoding
ou of dimension n, its feature embedding hu is calculated as
hu = Wu · ou , whereWu is a d × n weight matrix. Similarly,
for a service node s with a one-hot encoding os of dimension
m, its feature embedding hs is calculated as hs = Ws · os ,
where Ws is a d × m weight matrix. Finally, we represent
the edge feature embedding as the Hadamard product of the
user and service feature embeddings, eus = hu 
 hs , where

 denotes the Hadamard product.

Therefore, through one-hot encoding and feature embed-
dingmapping, we can represent user nodes and service nodes
as d-dimensional feature embedding vectors for subsequent
training of the message-passing graph neural network model
and recommendation tasks. The pseudocode of the algorithm
for this part of the scheme is shown in Algorithm 1.

Trust-aware graph neural QoS prediction

In this section, we employ theMP-GNN to process the graph
G(V , E) after its construction, thereby fusing multi-source
information for effectiveQoSpredictionwhile achievinguser
privacy protection. Figure4 illustrates a trust-aware graph
neural QoS prediction framework comprising four functional
modules: message generation, aggregation, update, and read-
out function. The level index of the graph neural network

Algorithm 1 Trust graph construction and embedding pro-
cessing.
Require: User set U = {u1, u2, . . . , un}; service set S =

{s1, s2, . . . , sm}; interaction set E with trusted QoS value; embed-
ding dimension d; ε: privacy budget; δ: slack term

Ensure: Feature embeddings hu ∈ R
d for users and hs ∈ R

d for
services, and the edge feature embedding eus ∈ R

d

1: Step 1: Construct the Initial Interaction Graph.
2: Construct an initial user-service interaction graphG using U , S, and

trusted QoS values.
3: Step 2: Inject Noise for user nodes.
4: for each user node ui ∈ U do
5: Generate a new user node identifier ũi .
6: end for
7: Define the new user node set Ũ and update the interaction graph to

G ′
8: Step 3: One-Hot Encoding.
9: for each user ũi ∈ Ũ , s j ∈ S do
10: ou ← one-hot vector of length n.
11: os ← one-hot vector of length m.
12: end for
13: Step 4: Feature Embedding.
14: Initialize weight matrices Wu ∈ R

d×n and Ws ∈ R
d×m .

15: for ũi ∈ Ũ , s j ∈ S do
16: Compute the feature embedding hũi = Wu ·ou and hs j = Wv ·os ,

respectively.
17: end for
18: Calculate the edge feature embedding eus = hu 
 hs , where 


denotes the Hadamard product.
19: Return hu , hs , and eus

(GNN) is denoted as l = 0, 1, . . . , L −1. Each node updates
its feature representation through message passing on the
graph, utilizing information from its neighboring nodes to
update its own representation. Specifically, each node aggre-
gates and updates its hidden features through a specific
function. In each layer of the graph neural network, a node’s
representation is updated through the representations of its
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Message generation function
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Fig. 4 The flowchart of trust-aware graph neural QoS prediction

neighboring nodes. Hence, the following is a description of
the node feature at layer l:

In a typical MP-GNN framework, M is commonly imple-
mented using a feedforward neural network. This function
integrates the messages from node u, its neighboring node s,
and the edge eus to generate a new node representation m(l)

us .
Specifically, M can be a multilayer perceptron (MLP), with
inputs being the features h(l−1)

u and h(l−1)
s of nodes u and s,

respectively, along with the information from edge eus . The
output is the updated node feature m(l)

us .

m(l)
us = M(W (l)Φ(h(l−1)

u ; h(l−1)
s ; eus) + b(l)), (7)

where Φ represents the concatenation of the feature of node
u, its neighbor node v, and the feature of edge eus . W (l)

denotes the weight matrix, while b(l) represents the bias vec-
tor.

The AGG function aggregates the information from all
neighbor nodes s of node u. In this context, we use averaging
as the aggregationmethod. Specifically, for nodeu, its feature
a(l)
u is averaged using the features m(l)

us of its neighboring

nodes s. It is defined as follows:

a(l)
u = 1

|Nu |
∑
s∈Nu

m(l)
us , (8)

where Nu denote the set of neighbor nodes of node u, |Nu |
represent the number of neighbor nodes.

The update function updates the feature a(l)
u of node u. It

takes h(l−1)
u and a(l)

u as inputs and outputs the updated node
feature h(l)

u .

h(l)
u = U(Φ(h(l−1)

u ; a(l)
u )), (9)

where Φ means concatenating h(l−1)
u and a(l)

u . Here, we also
use anMLP to implement the update function. By combining
the aforementioned functions, node features can be updated
in each layer of the GNN to facilitate the message passing
process.

In the MP-GNN, after computing the L-layer GNN
node feature propagation, the node features are sequentially
updated and stored in the hidden layers, ultimately form-
ing the hidden feature representation of the last layer. Then,
through a readout process, the final node features h(L)

u are
transformed into global graph features, which are then out-
put. Typically, one can linearly transform the final feature of
a node and apply an activation function to generate the final
output. The process can be represented as follows:

R̂G
u,s = σ(Wh(L)

u + b), (10)

where R̂G
u,s is the predicted output of node u, σ denotes the

activation function,W is the weight matrix, and b represents
the bias term.

Graph neural QoS prediction andmodel training

To effectively utilize GNN for QoS prediction, the above
model must be trained reliably. The loss function for the
graph structure is defined as follows:

L = 1

|V |
∑

(u,s)∈V

∣∣∣RG
u,s − R̂G

u,s

∣∣∣ , (11)

where |V | is the total number of nodes in the graph, (u, s)
represents each node, RG

u,s represents the true value, R̂G
u,s

represents the predicted value. During training, we adopt
adaptive moment estimation as the optimizer.

Given the user-service invocation records, the update
function’s value can be transformed through a fully con-
nected layer with the sigmoid activation function to predict
the missing QoS value RG

u,s using the trained TPP-GNCF, as
described in Eq. (10). In short, we opt for ReLU as the acti-
vation function for the MLP during the entire GNN message
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propagation process and use the sigmoid activation function
in the prediction stage.

Trust-aware collaborative filtering QoS prediction

In the above section, we designed a graph neural network
that can predict by utilizing the embedded features of users
and services. However, these embedded features have not
been fully exploited for QoS prediction. In particular, some
implicit relationships between embedded features cannot be
directly captured by GNN. To improve the accuracy of QoS
prediction, we introduce a weight function-based similarity
computation to perform trust-aware collaborative prediction.

Given the extracted feature embedding vectors, we cal-
culate the similarity between the embedding vectors repre-
senting the user and the service, respectively. Suppose there
are two user embedding vectors hui and hu j . We employ the
Pearson correlation coefficient (PCC) [45] to calculate the
similarity between them:

SIM(hui , hu j ) =
∑d

k=1(h
(k)
ui − h̄ui )(h

(k)
u j − h̄u j )√∑d

k=1(h
(k)
ui − h̄ui )

2
√∑d

k=1(h
(k)
u j − h̄u j )

2
,

(12)

where d represents the dimension of the embedding vector,
h(k)
ui is the embedding value of user ui in the k-th dimen-

sion, h̄ui is the average of the embedding in all dimensions
of user ui . Although PCC can provide good accuracy, to fur-
ther achieve higher accuracy, we propose an improved PCC
method. This improved similarity is calculated as follows:

ISIM(ui , u j ) = SIM(hui , hu j ) × H(hui , hu j ), (13)

where SIM(hui , hu j ) is Eq.(12), and H(hui , hu j ) is a weight
function. In particular, H(hui , hu j ) is defined as follows:

H(hui , hu j ) = T (U )
w(hui ,hu j ), (14)

where T (U ) = 1
ln(2+|U |) ,U represents the set of trusted users

invoking the service, and |U | represents the number of users
providing trusted QoS values. w(hui , hu j ) can be expressed
as follows:

w(hui , hu j ) = 1√∑d
k=1(h

(k)
ui − h(k)

u j )
2
. (15)

Similar to Eq. (12), the similarity between service embedding
hsi and hs j is computed as follows:

SIM(hsi , hs j ) =
∑d

k=1(h
(k)
si − h̄si )(h

(k)
s j − h̄s j )√∑d

k=1(h
(k)
si − h̄si )

2
√∑d

k=1(h
(k)
s j − h̄s j )

2
,

(16)

where h(k)
si is the embedding value of service si in the k-th

dimension, h̄si is the average of the embedding values across
all dimensions of service si .

Next, we can determine a set of the most similar user
neighbor sets N (ui ) and service neighbor sets N (s j ), respec-
tively, based on the similarity between the obtained user and
service embedding vectors for QoS prediction. The predic-
tion formula is as follows:

⎧⎪⎨
⎪⎩
RU
u,s = r̄u +

∑
ua∈N (u) ISIM(hu ,hua )(ra,s−r̄a)∑

ua∈N (u) ISIM(hu ,hua )

RS
u,s =

∑
sb∈N (s) SIM(hs ,hsb )·ru,b∑

sb∈N (s) SIM(hs ,hsb )
,

(17)

where RU
u,s and RS

u,s represent the QoS prediction values
based on similar neighbor sets N (ui ) and N (s j ) respectively.
r̄u is the average QoS across all services for user u. ra,s signi-
fies the actual QoS provided by neighbor user ua for service
s. r̄a reflects the average QoS across all services offered by
neighbor user ua . rub is the predicted QoS value of user u to
neighbor service sb.

Previous studies have shown that either RU
u,s or R

S
u,s fails

to achieve good prediction performance. Therefore, a com-
bination of the two methods is still used for prediction in this
work. The final formula of trust-aware collaborative predic-
tion is as follows:

RCF
u,s = ωRU

u,s + (1 − ω)RS
u,s . (18)

InEq. (18),ω is aweight parameter that represents the relative
importance of RU

u,s and RS
u,s in the final prediction. We set

ω = 0.5(0 ≤ ω ≤ 1) to indicate that the weights of the
two parts are equal. Equation (18) describes the final QoS
prediction result by collaborativefiltering anduses theweight
parameter ω to adjust the contributions of the two prediction
results to obtain the QoS prediction value.

Fusion Qos prediction

Asmentioned earlier in this section, bothmethods introduced
above can perform QoS prediction, but neither achieves very
high prediction accuracy. Therefore, to enhance prediction
accuracy formissing values, TPP-GNCF integrates the above
two prediction methods using the parameter ζ to create a lin-
ear fusion prediction model to achieve improved prediction
performance. The final QoS fusion prediction model can be
expressed as follows:

RFinal
u,s = ζ R̂G

u,s + (1 − ζ )RCF
u,s , (19)

where RFinal
u,s represents the ultimate predicted QoS value

of the target user, R̂G
u,s is the QoS prediction value obtained

through the GNN, RCF
u,s is the QoS prediction value obtained
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by collaborative filtering. Parameter ζ is defined as the rel-
ative importance of our proposed TPP-GNCF framework to
R̂G
u,s and RCF

u,s . Here ζ ∈ [0, 1].

Privacy analysis

To demonstrate that adding Gaussian noise to user nodes
satisfies differential privacy, it is essential to show that the
process satisfies the formal definition of differential privacy.
Specifically, considering adjacent databases D and D′, the
noise adding mechanism M must satisfy Eq. (1). To ensure
user privacy, Gaussian noise is added to user identities during
the construction of the user-service interaction graph, ũi =
ui + ηi , where ηi ∼ N (0, σ 2). According to the properties
of the Gaussian mechanism, for any two adjacent datasets D
and D′, and any output T , the following holds:

Pr[M(D) ∈ T ]
Pr[M(D′) ∈ T ] ≤ exp

(
‖ f (D) − f (D′)‖22

2σ 2

)
. (20)

Since user nodes ui and u′
i produce different outputs only

when a single user changes, the sensitivity � f = 1. When

‖ f (D) − f (D′)‖2 ≤ � f , and if σ ≥ � f
√

2 log(1.25/δ)
ε

, then

exp
(

� f 2

2σ 2

)
≤ exp(ε). Therefore,

Pr[M(D) ∈ T ] ≤ eε Pr[M(D′) ∈ T ]. (21)

Furthermore, since the noise ηi is applied independently to
each user node ui , and the distribution of each noise is sym-
metric, for any single user node change between adjacent
databases D and D′, its impact on the overall output is lim-
ited. According to the properties of the Gaussianmechanism,
the change in the output distribution satisfies the differen-
tial privacy condition. Therefore, Eq. (1) holds. Based on
the above analysis, the construction process of the entire
trust-aware graph satisfies (ε, δ)-differential privacy, mak-
ing it difficult for attackers to infer the true identity of the
user from the obfuscated node identifiers, thereby effectively
protecting user privacy.

Complexity analysis

The algorithm pseudocode of TPP-GNCF is displayed in
Algorithm 2. The complexity of TPP-GNCF mainly comes
from two parts: Trust-aware graph neural QoS prediction and
Trust-aware collaborative filtering QoS prediction.

For the trust-aware graph neural QoS prediction method,
if d is the embedding dimension, the implementation com-
plexity of the message passing function M is O(d2e), where
e is the number of edges. The aggregation function aggre-
gates information from neighbor nodes. For each node u, the

Algorithm 2 TPP-GNCF for QoS prediction
Require: M : user-service invocationmatrix; d: embedding dimension;

ζ : weight coefficient;α: percentage of untrustworthy value; Ku(Ks):
maximum number of similar user (service) embedding

Ensure: QoS prediction value of TPP-GNCF.;
1: Stage(I): Trust graph construction and embedding processing.
2: Select a trusted QoS value using 3-σ of the Gaussian distribution

from Eq.(6);
3: Execute Algorithm 1 to obtain hu and hs ;
4: Stage(II): Trust-Aware Graph Neural QoS Prediction.
5: for l = 0 · · · L do
6: for u, s ∈ V do
7: Calculate m(l)

us , a
(l)
u , and h(l)

u according to Eqs.(7)-(9), respec-
tively.

8: end for
9: end for
10: for all u ∈ V do
11: Calculate RG

u,s from the Eq.(10).
12: end for
13: Stage(III): Trust-aware collaborative filtering QoS prediction.
14: Calculate the similarity of user embedding and service embedding

according to Eqs.(13) and (16), respectively.
15: Identify a set of similar neighbors N (ui ) and N (s j ) based on

Eqs.(13) and (16), respectively.
16: Calculate RU

u,s and RS
u,s based on N (ui ) and N (s j ), respectively.

17: Calculate RCF
u,s based on RU

u,s and RS
u,s from Eq.(18).

18: Stage(IV): Fusion QoS prediction.
19: Calculate the ultimate predicted QoS value RFinal

u,s based on RG
u,s

and RCF
u,s utilizing Eq.(19).

information of all its neighbor nodes v needs to be aggre-
gated. Assume that each node has Nk neighbors, the number
of edges is e, and the number of nodes is n + m. Each user
node has |N (u)| neighbors, and the aggregation complexity
of each node is is O(|N (u)| d), and the complexity of the
total aggregation function is the sum of the complexity of all
nodes

∑
u∈V O(|N (u)| d), since

∑
u∈V O(|N (u)d|) = 2e,

the overall complexity is O(2ed). Therefore, the complexity
of the aggregation function is O(de). The update func-
tion updates the previous layer representation of the node
and the aggregated representation, with a complexity of
O((n +m)d2). The readout function linearly transforms the
final representation of each node and applies an activation
function, with a complexity of O((n+m)d). Since the graph
neural network has L layers, the total complexity of the entire
graph neural network is O(L(m + n + e)d2).

For the trust-aware collaborative filtering QoS predic-
tion scheme, we set the total number of users to n, the
total number of services to m, and the embedding dimen-
sion size to d. For the similarity calculation of each pair of
users and each pair of service embedding vectors, the total
complexity is O(n2d) and O(m2d), respectively. Addition-
ally, the complexity of the calculation of the weight function
H(hui , hu j ) is O(d). Hence, the complexity of calculating
similarity is still O(n2d) and O(m2d), respectively. For the
calculated user and service embedding vector similarities,
the complexity to select the most similar neighbor set is
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O(nk log n) and O(mk logm), respectively, where k is the
number of selected neighbors. The complexity of the predic-
tion part based on user embedding and service embedding is
O(nk+mk). The final complexity of collaborative prediction
is O(nm). Since O(n2d + m2d) is the largest complex-
ity term, the time complexity of this part of the algorithm
can be simplified to O(n2d + m2d). The above analysis
reveals that the complexity of TPP-GNCF can be expressed
as O(L(m + n + e)d2 + n2d + m2d).

Experiment and Evaluation

We undertake a series of experiments to fully verify the
effectiveness of the TPP-GNCF proposed in this section. To
accomplish this goal, wewill solve three problems in the next
experiments.

• RQ1: How do different parameters impact the perfor-
mance of TPP-GNCF?

• RQ2:How does TPP-GNCF perform compared to exist-
ing schemes?

• RQ3: How do the several variants of TPP-GNCF per-
form?

Experiment environment and dataset

The experiments described in this work were carried out on
a single computing system using the PyCharm development
environment, with Python 3.6 as the major programming
language. The hardware specifications include an Intel(R)
Core(TM): i5-11400F, 2.60 GHz CPU with 32.0 GB RAM,
and NVIDIA GeForce RTX 3080Ti.

To validate the effectiveness of TPP-GNCF’s QoS pre-
diction, a sequence of experiments was executed utilizing
the WS-DREAM dataset [29]. Currently, the WS-DREAM
dataset is extensively employed to assess the effectiveness
of various QoS prediction methods, predominantly cen-
tered around two categories of user-service QoS invocations:
response time (RT) and throughput (TP), which encompasses
a total of 1,974,675 historical QoS invocation records gath-
ered from 339 users and 5,825 web services. In this paper,
we take into account the sparsity of the user-service matrix
in the real-world environment.We set the QoS dataset to four
distinct low densities (5%, 10%, 15%, and 20%) for training
the model on RT and TP. Subsequently, to assess prediction
performance, the other data samples under each density were
utilized as the test set.

Evaluationmetrics

To assess the disparity between the true and predicted values
in the test set, we utilize three widely accepted prediction

accuracy metrics to compare the predictive performance of
TPP-GNCFwith othermethods:mean absolute error (MAE),
root mean square error (RMSE), and normalized mean abso-
lute error (NMAE). These metrics quantify the accuracy of
the predicted QoS values, offering complementary insights
into prediction performance. TheMAEmeasures the average
absolute error between the predicted and actual values, pro-
viding an intuitive evaluation of the overall prediction error.
MAE is defined as

MAE =
∑

u,s

∣∣Ru,s − R̄u,s
∣∣

N
, (22)

where Ru,s and R̄u,s indicate the true and predicted QoS
values of user u invoking service s, respectively, and N is
the total number of predicted QoS values. RMSE is a met-
ric that squares the errors, making it particularly effective at
highlighting significant deviations and sensitive to outliers.
Especially when the error distribution is uneven, RMSE can
better reflect the overall performance of the model. It is cal-
culated as

RMSE =
√∑

u,s(Ru,s − R̄u,s)2

N
. (23)

In addition, to further evaluate the model’s performance, we
introduce the NMAE when comparing it with existing solu-
tions, which can better reflect the relative accuracy of the
model prediction results by eliminating scale dependence,
making the results interpretable across different datasets and
prediction models, thereby providing a more fair and accu-
rate performance comparison. NMAE is given by

NMAE = MAE

Rmax − Rmin
, (24)

where Rmax and Rmin denote the maximum and minimum
observed QoS values in the dataset, respectively.

Comparedmethods

We conducted comparative experiments using ten distinct
approaches detailed below to assess the performance of TPP-
GNCF.

• UPCC [30]: This method uses the collaborative filtering
method to find similar neighbors of users through PCC,
and then predicts empty QoS values through historical
information.

• IPCC [31]: This is a collaborative filtering prediction
method that mainly relies on PCC to compute service
similarity and estimate missing QoS values with the help
of historical invocation matrix information.
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• UIPCC [29]: This scheme mainly linearly integrates
UPCC and IPCC to forecast empty QoS values based on
weight parameters.Originally, it was also namedWSRec.

• NIMF [19]: This method is the first to incorporate sim-
ilar users into MF for service QoS prediction, which
is mainly a neighborhood integration MF that utilizes
PCC and identifies user neighborhoods based on histori-
cal information.

• NDMF [10]: Thismethod is a QoS prediction framework
that integrates neighbor-integrated deepmatrix factoriza-
tion, which extracts latent user and service characteristics
through nonlinear interaction functions to improve tradi-
tional prediction schemes.

• NRCF [46]: This method presents a standard recovery
CF scheme to address the issues of personalized web ser-
vices. It introduces a novel similarity metric to enhance
the accuracy of identifying similar users and web ser-
vices.

• PMF [32]: This method primarily employs probabilistic
matrix factorization for predicting QoS values.

• PSO-USRec [47]: This is a QoS prediction scheme that
uses swarm intelligence search, which remodels the diffi-
cult problemofQoSprediction as a optimization problem
to improve the prediction performance.

• FHC-DQP [48]: This is a unique privacy-preserving
collaborative federated QoS prediction framework that
mainly uses federated learning to protect user-service
invocation information and improves distributed QoS
prediction performance through multi-stage federated
collaborative learning and user clustering.

• CNCF [34]: This method combines neural collaborative
filtering and clustering algorithms to design a QoS pre-
diction framework that considers contextual information
for IoT services.

Sensitivity analysis of the parameters (RQ1)

1) Impact of ζ . In our fusion model, ζ reflects the rel-
ative importance of our proposed TPP-GNCF framework
to RG

u,s and RCF
u,s . In Eq. (19), we impose the constraint

ζ ∈ [0, 1]. Therefore, to explore how ζ affects the predic-
tion performance of our scheme in this section, we conducted
experiments on the parameter ζ in the range 0 to 1, and the
outcomes are illustrated in Fig. 5.

Figure5 presents the performance comparison between
RTandTPacross various parameter ζ values.As illustrated in
Fig. 5, for the RT property, theMAE increases as the value of
ζ decreases, whereas for the TP property, theMAE increases
as the value of ζ increases. However, when ζ is set to 0.8
and 0.5, TPP-GNCF achieves smaller MAE and RMSE val-
ues on the RT property, respectively. When ζ is set to 0.2,
TPP-GNCF achieves lower values on the TP property. This
trend indicates that in TPP-GNCF, both RG

u,s and RCF
u,s play

an effective role. Therefore, considering the sensitivity of
parameter ζ , our subsequent experiments set ζ = 0.8 on RT
and ζ = 0.2 on TP.

2) Impact of d. In the embedding processing stage,
the parameter d involving the embedding of user and ser-
vice nodes represents the dimension size of the embedding.
Embedding dimensions play a crucial role in model training
as they directly impact the quality of the embedding vec-
tors. Therefore, we experimented with different embedding
dimensions, including 2, 4, 8, 16, 32, 64, and 128, and varied
the matrix density from 5% to 20% for further exploration.
To simplify the experiment, we only verified and interpreted
the results on RT.

As illustrated in Fig. 6, both MAE and RMSE exhibit
an upward trend when the embedding dimensions are 2, 4,
and 8. Starting from an embedding dimension of 16, MAE
exhibits a downward trend, reaching its minimum value at
an embedding dimension of 64. However, when the embed-
ding dimension is 128, the MAE increases again. Apart from
a few outliers, it is evident that MAE demonstrates supe-
rior performance with an increasing embedding dimension.
This indicates that as the embedding dimension increases, the
model demonstrates effective feature extraction capabilities.
However, these outliers may be due to the small embedding
dimension making the embedding vector too uncomplicated
to fit the outliers well. Taking everything into consideration,
in the subsequent experiments,we established the embedding
dimension as 64.

3) Impact of α. The parameter α represents the percent-
age of untrustworthy values. To explore the influence of α

on the accuracy of predictions, we selected untrustworthy
value ratios of 10%, 15%, 20%, and 25%, and conducted
experiments for RT and TP. Figure7 illustrates the RT and
TP prediction results under various matrix densities.

As illustrated in Fig. 7, the values of MAE and RMSE
gradually become larger as the percentage of untrustworthy
values increases, indicating that the more untrustworthy val-
ues, the worse the prediction results. The results illustrate
that eliminating untrustworthy values significantly benefits
prediction accuracy.

4) Impact of Ku and Ks . The parameters Ku and Ks rep-
resent the maximum number of similar user embeddings and
service embeddings, which are utilized to generate neighbor
sets for hui and hs j to predict empty QoS values. To inves-
tigate the impact of Ku and Ks on model performance, we
conducted experiments under conditions with density matrix
values of 5%, 10%, 15%, and 20%. We adjusted Ku from 10
to 30 with a step size of 5 and Ks from 100 to 500 with a
step size of 100. The corresponding results are presented in
Figs. 8 and 9.

Figure8 illustrates that for both RT and TP, the MAE and
RMSE values gradually decrease as Ku increases. This trend
occurs because the increase in Ku leads to a gradual rise
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Fig. 5 Parameter sensitivity analysis of ζ of TPP-GNCF under RT and TP

Fig. 6 The impact of embedding dimension d

Fig. 7 The impact of the percentage of untrustworthy values

Fig. 8 Impact of Ku
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Fig. 9 Impact of Ks

in the number of learnable similar user embedding vectors,
thereby offering more potential features and consequently
contributing to improved prediction results. In Fig. 8a, the
change inMAE is nearly negligiblewhen the Ku value ranges
between 15 and 20. When Ku=25, the MAE value is even
slightly higher than that when Ku is 20. As shown in Fig. 9,
with the increase of Ks , it is observed that the changes of
MAE and RMSE at RT and TP are very small, especially
the value of RMSE. Since the direct correlation between the
model’s prediction time and the values of Ku and Ks , we
established Ku=30 and Ks=500 for the experimental.

To assess the feasibility of TPP-GNCF, we conducted two
parts of experiments, comprising comparisons with existing
methods and ablation experiments. Specific experiments and
analyses are discussed further below.

Performance comparison and analysis (RQ2)

During the comparison experiments, the QoS invocation
matrices of RT and TP were separated into four distinct den-
sities, which are 5%, 10%, 15%, and 20%, respectively. All
comparative experiments were performed on the training sets
of RT and TP, and the MAE, RMSE, and NMAE were uti-
lized to assess the performance of the prediction on the test
set. The parameter settings for TPP-GNCF are presented in
Table 1. To ensure fairness in comparing prediction results,
we executed TPP-GNCF multiple times and calculated the
average value for comparison.

Tables 2 and 3 exhibit the experimental results of MAE
and RMSE for different schemes on RT and TP, respectively.
It is well-known that inQoS prediction, lower values ofMAE
and RMSE imply enhanced predictive performance. There-
fore, it is evident that TPP-GNCF outperforms other schemes
significantly in bothRT andTP. It isworth noting that, similar
to the literature [48, 49], we directly use the results shown in
PSO-USRec, FHC-DQP, NDMF, and CNCF. As illustrated
in Table 2, UPCC and IPCC show poorly compared to other
methods because these two schemes directly predict miss-
ing QoS values of users and services, respectively, without
additional processing. UIPCC significantly improves QoS
prediction performance by combining collaborative filtering

methods for user and service neighborhoods. PMF is a basic
method using matrix factorization, which is improved over
the previous methods in QoS prediction. PSO-USRec uses
a swarm intelligence search method for prediction, show-
ing slightly improved performance over previous solutions.
NRCF addresses the issue of personalized web service by
introducing a novel similarity calculation and collaborative
filtering method, thereby improving QoS prediction. NIMF
utilizes a traditional neighborhood-incorporated matrix fac-
torization method, showing slight improvement over PMF
by incorporating neighborhoods in model training. FHC-
DQP significantly outperforms previous methods, primarily
improving prediction performance through federated learn-
ing and user clustering. NDMF improves the traditional
matrix factorization QoS prediction scheme by extracting
latent user and service features through nonlinear interac-
tion functions. For IoT services, CNCF combines neural
collaborative filtering and clustering algorithms to develop
a QoS prediction scheme that considers contextual informa-
tion, which greatly improves the performance. At the same
time, combined with Table 3, we can see that the prediction
performance of the PMF scheme on RT is relatively poor,
but the prediction performance on TP is better. In addition,
NMAE is introduced for comparison with existing solutions,
as shown in Table 4, as it better reflects the relative accuracy
of model prediction results. Regarding the NMAE metric,
TPP-GNCF achieves at least a 48% improvement on RT and
a 0.8% improvement onTP compared to other advanced solu-
tions. It is evident that the proposed TPP-GNCF outperforms
all comparative solutions in RT and TP. This improvement
is attributed to the fact that TPP-GNCF introduces graph
convolutional networks and trust-aware weighting mecha-
nisms, which utilize the 3-σ rule to filter out outliers to
select reliable QoS data, significantly improving data qual-
ity and effectively alleviating the challenges posed by sparse
data. Furthermore, trust-aware collaborative prediction based
on weight function enables the model to capture the trust
relationship between users and services, and deeply mine
latent features, thereby mitigating the poor performance of
traditional methods on low-density datasets. This enables
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Table 1 Parameter setting for
performance comparison
experiment

Parameter Value Meaning

ζ 0.8(RT), 0.2(TP) Weight coefficient

Ku 30 The maximum number of similar user embedding

Ks 500 The maximum number of similar service embedding

d 64 Embedding dimension

α 0.1 The percentage of untrustworthy values

ε1, ε2 0.6, 0.9 Privacy budget

δ 0.0001 Slack term

Table 2 Comparison of QoS
prediction performance among
different methods in terms of
Response Time

Method Density=5% Density=10% Density=15% Density=20%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 0.6353 1.3805 0.5528 1.3109 0.5131 1.2590 0.4856 1.2196

IPCC 0.6337 1.3979 0.5918 1.3430 0.5102 1.2588 0.4558 1.2050

UIPCC 0.6243 1.3896 0.5813 1.3293 0.5010 1.2510 0.4492 1.1966

PMF 0.5698 1.5355 0.4868 1.3179 0.4528 1.2206 0.4328 1.1712

NRCF 0.5536 1.4378 0.4897 1.3525 0.4544 1.2931 0.4289 1.2430

NIMF 0.5588 1.4826 0.4916 1.3109 0.4569 1.2299 0.4357 1.1844

PSO-USRec 0.5655 1.3580 0.5064 1.2742 0.4706 1.2221 0.4440 1.1813

FHC-DQP 0.5100 1.4000 0.4340 1.3160 0.3950 1.2360 0.3380 1.2050

NDMF 0.4880 1.3495 0.4304 1.2349 0.3845 1.1569 0.3665 1.1294

CNCF 0.3690 0.6720 0.3380 0.6210 0.3290 0.6060 0.3140 0.5920

TPP-GNCF-ε1 0.3101 0.6457 0.3022 0.6380 0.2984 0.6363 0.2978 0.6357

TPP-GNCF-ε2 0.2787 0.6237 0.2785 0.6176 0.2744 0.6157 0.2696 0.6151

TPP-GNCF 0.1776 0.5946 0.1737 0.5839 0.1668 0.5759 0.1633 0.5690

Gains 51.87% 11.52% 48.61% 5.97% 49.30% 4.97% 47.99% 3.89%

The best values of the baseline methods and the TPP-GNCF model are highlighted in bold

Table 3 Comparison of QoS prediction performance among different methods in terms of Throughput

Method Density=5% Density=10% Density=15% Density=20%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 28.5879 62.5354 26.4949 59.9933 23.5350 56.4801 21.5375 53.6545

IPCC 27.0193 62.3098 26.2085 58.7562 23.7279 56.1661 22.9322 54.1675

UIPCC 26.5895 62.2850 25.3856 58.5963 23.0015 56.0079 21.0526 53.0957

PMF 19.0454 57.4000 16.0610 48.0965 14.9004 44.1907 14.1076 41.9384

NRCF 23.5318 60.1241 18.9637 53.0881 16.1386 48.1330 14.4772 44.6851

NIMF 23.4704 60.6047 18.2285 50.4683 16.0876 46.8689 14.5792 42.6737

PSO-USRec 23.3323 60.1550 19.7397 54.2544 17.8389 50.2085 16.7872 47.3949

FHC-DQP 17.2660 51.5200 14.3470 46.6050 13.4950 44.9160 12.6380 42.1970

NDMF 16.3818 50.9612 13.9317 43.9095 12.5043 42.5319 11.7204 39.9431

CNCF 21.0270 38.6710 18.1890 33.5740 17.3730 32.3760 16.8260 31.4640

TPP-GNCF-ε1 17.2536 38.8207 16.1393 36.6113 15.7245 35.7555 15.5176 35.3650

TPP-GNCF-ε2 16.8593 36.7455 15.0744 33.8160 14.3979 32.5898 14.0558 31.9353

TPP-GNCF 16.2451 34.1611 13.7812 29.7082 12.1670 26.8150 11.8372 25.4090

Gains 0.83% 11.66% 1.08% 11.51% 2.70% 17.18% −0.99% 19.24%

The best values of the baseline methods and the TPP-GNCF model are highlighted in bold
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Table 4 Comparison of NMAE
values for QoS prediction across
different methods in terms of
Response Time (RT) and
Throughput (TP)

Method Density=5% Density=10% Density=15% Density=20%

RT TP RT TP RT TP RT TP

UPCC 0.03177 0.02858 0.02764 0.02650 0.02566 0.02355 0.02428 0.02155

IPCC 0.03169 0.02702 0.02959 0.02621 0.02551 0.02373 0.02279 0.02293

UIPCC 0.03122 0.02659 0.02907 0.02539 0.02505 0.02300 0.02246 0.02105

PMF 0.02849 0.01905 0.02434 0.01606 0.02264 0.01490 0.02164 0.01411

NRCF 0.02769 0.02351 0.02450 0.01898 0.02272 0.01612 0.02143 0.01449

NIMF 0.02794 0.02347 0.02458 0.01823 0.02285 0.01609 0.02179 0.01458

PSO-USRec 0.02828 0.02333 0.02532 0.01974 0.02353 0.01784 0.02220 0.01679

FHC-DQP 0.02550 0.01727 0.02170 0.01435 0.01975 0.01350 0.01690 0.01264

NDMF 0.02440 0.01638 0.02152 0.01393 0.01923 0.01250 0.01833 0.01172

CNCF 0.01845 0.02103 0.01690 0.01819 0.01645 0.01737 0.01570 0.01683

TPP-GNCF-ε1 0.01551 0.01725 0.01511 0.01614 0.01492 0.01572 0.01489 0.01552

TPP-GNCF-ε2 0.01394 0.01686 0.01393 0.01507 0.01372 0.01440 0.01348 0.01406

TPP-GNCF 0.00888 0.01625 0.00869 0.01378 0.00834 0.01217 0.00817 0.01184

Gains 51.9% 0.8% 48.6% 1.1% 49.3% 2.7% 48.0% −1.0%

The best values of the baseline methods and the TPP-GNCF model are highlighted in bold

Fig. 10 Ablation experiment

TPP-GNCF to handle sparse data more robustly and achieve
better prediction performance.

To analyze theQoSprediction performance ofTPP-GNCF
in terms of privacy protection, we selected privacy budgets of
ε1 = 0.6 and ε2 = 0.9, along with a slack term δ = 0.0001
for the comparative experiments. Obviously, after intro-
ducing the privacy budget, the prediction performance of
TPP-GNCF declined compared to the original. Specifically,
compared to TPP-GNCF, TPP-GNCF-ε1 and TPP-GNCF-ε2
significantly reduce the MAE by about 39% and 45.16%,
and the RMSE by 7.5% and 10.49% on the RT, respectively.
Similarly, on the TP dataset, TPP-GNCF-ε1 and TPP-GNCF-
ε2 showed significant reductions in MAE of about 23.72%
and 15.78%, and RMSE of 28.15% and 20.43%, respec-
tively. Moreover, TPP-GNCF-ε1 also outperforms the other
competing schemes by improving the MAE and RMSE by
15.96% and 3.91%, respectively, across the four matrix den-
sities in the RT dataset. TPP-GNCF also slightly improves
the MAE and RMSE compared to other competing schemes
by 2.7% and 19.24% on the TP, respectively. However, it
is worth noting that across the four matrix densities of the
RT dataset, although the values of both MAE and RMSE

gradually decrease, the differences in the decreases between
each matrix density are relatively small. The above trend is
also reflected in the NMAEmetric. TPP-GNCF-ε1 and TPP-
GNCF-ε2 both show decreases in performance on RT and TP
datasets compared to TPP-GNCF.

Ablation experiments and analysis (RQ3)

In this section, we conduct ablation experiments to evalu-
ate the benefits of the fusion model by considering three
variants of TPP-GNCF: TPP-GNCF-CF, TPP-GNCF-G, and
TPP-GNCF-H. TPP-GNCF-CF represents that the scheme
does not consider the impact of collaborative filtering; TPP-
GNCF-G indicates that the scheme does not consider the
impact of GNN; TPP-GNCF-H indicates that the scheme
does not utilize the improved PCC.

The MAE and RMSE results for RT and TP of TPP-
GNCF and its three variants at various matrix densities
are illustrated in Fig. 10. For RT, we found that the perfor-
mance of TPP-GNCF-Gwas the worst compared to the other
three variants, following the trend: TPP-GNCF-G > TPP-
GNCF-CF > TPP-GNCF-H > TPP-GNCF. In other words,
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TPP-GNCF exhibited the best prediction performance. For
TP, TPP-GNCF-CF showed the worst performance, with the
trend: TPP-GNCF-CF > TPP-GNCF-G > TPP-GNCF-H
> TPP-GNCF. However, the prediction performance of all
three variants is inferior to that of the fusion model, TPP-
GNCF. This also illustrates the absolute advantage of the
improved fusion model presented in this paper. In summary,
TPP-GNCF demonstrates the best prediction performance
for both RT and TP, proving that the improved fusion model
significantly enhances accuracy and reliability across various
matrix densities.

Conclusion

To explore the balance issue between user privacy, data cred-
ibility, and QoS prediction performance in IoT services, in
this work, we design a trust-aware privacy-preserving QoS
prediction framework based on the fusion model, named
TPP-GNCF. First, we filter out untrustworthy QoS values
that may affect the model’s understanding and prediction of
user behavior, which helps improveQoS prediction accuracy.
Then, we utilize message-passing graph neural networks to
effectively capture information passing and relationships in
the graph structure and differential privacy is employed to
protect the information of user nodes. Finally, the missing
QoS value prediction is achieved by fusing a graph neu-
ral network to predict QoS values and collaborative filtering
to predict QoS. Experimental results demonstrate that TPP-
GNCF is superior to the comparative solutions, achieving
improvements of at least 47.99% and 3.89% in MAE and
RMSE on RT, and at least 0.83% and 11.51% on TP, respec-
tively. Additionally, for the NMAE metric, our scheme also
demonstrates at least a 48% and 0.8% improvement on RT
and TP, respectively.

In future work, we intend to further expand the frame-
work to improve its applicability to larger-scale datasets and
a wider variety of IoT services. Moreover, we will explore
methods for integrating additional contextual information,
including user preferences and dynamic changes in service,
into the model to improve the precision of QoS predic-
tion. Simultaneously, we will also explore more efficient
privacy protection technologies to further reduce computa-
tional complexity and resource consumption while ensuring
user privacy.
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